首页> 外文OA文献 >Enhanced Multiobjective Evolutionary Algorithm based on Decomposition for Solving the Unit Commitment Problem
【2h】

Enhanced Multiobjective Evolutionary Algorithm based on Decomposition for Solving the Unit Commitment Problem

机译:基于分解的增强多目标进化算法   解决单位承诺问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The unit commitment (UC) problem is a nonlinear, high-dimensional, highlyconstrained, mixed-integer power system optimization problem and is generallysolved in the literature considering minimizing the system operation cost asthe only objective. However, due to increasing environmental concerns, therecent attention has shifted to incorporating emission in the problemformulation. In this paper, a multi-objective evolutionary algorithm based ondecomposition (MOEA/D) is proposed to solve the UC problem as a multi-objectiveoptimization problem considering minimizing cost and emission as the multipleobjec- tives. Since, UC problem is a mixed-integer optimization problemconsisting of binary UC variables and continuous power dispatch variables, anovel hybridization strategy is proposed within the framework of MOEA/D suchthat genetic algorithm (GA) evolves the binary variables while differentialevolution (DE) evolves the continuous variables. Further, a novel non-uniformweight vector distribution strategy is proposed and a parallel island modelbased on combination of MOEA/D with uniform and non-uniform weight vectordistribution strategy is implemented to enhance the performance of thepresented algorithm. Extensive case studies are presented on different testsystems and the effectiveness of the proposed hybridization strategy, thenon-uniform weight vector distribution strategy and parallel island model isverified through stringent simulated results. Further, exhaustive benchmarkingagainst the algorithms proposed in the literature is presented to demonstratethe superiority of the proposed algorithm in obtaining significantly betterconverged and uniformly distributed trade-off solutions.
机译:机组承诺(UC)问题是非线性,高维,高度约束,混合整数的电力系统优化问题,通常在文献中以最小化系统运行成本为唯一目标加以解决。然而,由于对环境的日益关注,最近的注意力已经转移到将排放纳入问题公式中。本文提出了一种基于分解的多目标进化算法(MOEA / D),以最小化成本和排放为目标,解决了作为多目标优化问题的UC问题。由于UC问题是由二进制UC变量和连续功率分配变量组成的混合整数优化问题,因此在MOEA / D的框架内提出了anovel杂交策略,从而遗传算法(GA)演化了二进制变量,而微分进化(DE)演化了二进制变量。连续变量。此外,提出了一种新颖的非均匀权重矢量分配策略,并基于MOEA / D与权重和非均匀权重矢量分配策略相结合的并行岛模型,以提高算法的性能。在不同的测试系统上进行了广泛的案例研究,并通过严格的模拟结果验证了所提出的杂交策略,非均匀权向量分布策略和并行岛模型的有效性。此外,针对文献中提出的算法进行了详尽的基准测试,以证明所提出的算法在获得明显更好的收敛和均匀分布的权衡解决方案方面的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号